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Abstract

WebAssembly is designed to be an alternative to JavaScript

that is a safe, portable, and efficient compilation target for

a variety of languages. The performance of high-level lan-

guages depends not only on the underlying performance of

WebAssembly, but also on the quality of the generated Web-

Assembly code. In this paper, we identify several features of

high-level languages that current approaches can only com-

pile to WebAssembly by generating complex and inefficient

code. We argue that these problems could be addressed if

WebAssembly natively supported first-class continuations.

We then present Wasm/k, which extends WebAssembly with

delimited continuations. Wasm/k introduces no new value

types, and thus does not require significant changes to the

WebAssembly type system (validation). Wasm/k is safe, even

in the presence of foreign function calls (e.g., to and from

JavaScript). Finally, Wasm/k is amenable to efficient imple-

mentation: we implement Wasm/k as a local change toWasm-

time, an existing WebAssembly JIT. We evaluate Wasm/k by

implementing C/k, which adds delimited continuations to

C/C++. C/k uses Emscripten and its implementation serves

as a case study on how to use Wasm/k in a compiler that

targets WebAssembly. We present several case studies using

C/k, and show that on implementing green threads, it can

outperform the state-of-the-art approach Asyncify with an

18% improvement in performance and a 30% improvement

in code size.

CCSConcepts • Software and its engineering→Corou-

tines.

Keywords virtual machines, first-class continuations, for-

mal language semantics
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1 Introduction

For decades, ECMAScript (JavaScript) was the only program-

ming language that was universally supported by all major

web browsers. There are now several, high-performance Ja-

vaScript implementations that make it possible to run large

programs, such as spreadsheets, IDEs, and video editors on

the Web. In fact, many contemporary desktop applications,

such as Slack and Visual Studio Code, are now built with

JavaScript and other web technologies [2].

Since web browsers, and thus JavaScript, are ubiquitous,

there are now scores of programming languages with com-

pilers that emit JavaScript to run on the Web. However, com-

piling to JavaScript has two serious drawbacks: 1) programs

may perform poorly when compiled to JavaScript, and 2) a

variety of language features, such as threads, are hard to

compile to JavaScript.

However, there is now an alternative to JavaScript.Web-

Assembly [18] is a recently introduced low-level language

that aims to be a better compiler target language than Java-

Script. All modern web browsers support WebAssembly, and

despite its name, there are several WebAssembly runtime

systems that are not embedded in browsers. When programs

written in C/C++ are compiled to WebAssembly, they run

1.3× faster on average than when they are compiled to Ja-

vaScript [18, 20]. However, given WebAssembly as it exists

today, it remains difficult to compile a variety of language

features, including green threads, coroutines, and continu-

ations. In fact, many languages that support these features

natively, either do not support them in WebAssembly, or

produce slow code. For example, the Go compiler has a Web-

Assembly backend. However, it struggles to support green

threads (Goroutines), which makes the compiler difficult to

maintain, and produces code that performs poorly [5ś7, 9].

Safety is a key design goal of WebAssembly, which is nec-

essary for web browsers to run untrusted code in a trustwor-

thy manner. Toward this end, WebAssembly programs are

isolated from the browser, and cannot directly alter the low-

level state of the WebAssembly runtime. In particular, the

WebAssembly stack is not stored on the WebAssembly heap.

Moreover, WebAssembly only supports structured control-

flow and does not support exceptions1, goto, and longjmp.

1There exists a formal proposal to extendWebAssembly with exceptions [3].
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These restrictions makeWebAssembly validation straightfor-

ward and fast. However, they make it difficult to implement

non-local control flow. For example, Goroutines and green

threads require low-level support for switching between

stacks, which WebAssembly does not directly support.

State of the art. To workaround the restrictions of WebAs-

sembly, the Go compiler performs a global program trans-

formation, which 1) builds a copy of the WebAssembly stack

in the heap to store local variables, and 2) simulates non-

local jumps via an elaborate state machine in each function.

Asyncify [27] uses a similar approach to add virtual instruc-

tions that save and restore stacks to WebAssembly. Prior

benchmarks indicate that Asyncify has a performance over-

head of 20%ś100%, and a similar increase in code size [27].

Moreover, since these tools use a global transformation to

achieve non-local control flow, programmers are forced to

pay a steep cost for such features, even when their code uses

them minimally.

Our contributions. In this paper, we present Wasm/k, an

extension to WebAssembly that adds support for first-class,

delimited continuations, which are sufficient to implement a

wide variety of language features, including green threads,

coroutines, and exceptions. Our extension has only a handful

of new instructions, is designed to support efficient imple-

mentation, and is designed to work well whenWebAssembly

programs interact with other languages (e.g., JavaScript).

Although first-class continuations are a well-known ab-

straction, they are typically found in higher-level program-

ming languages (e.g., Scheme and Racket). These languages

are compiled to low-level native code that does not support

first-class continuations. Our work inverts this tradition and

instead adds first-class continuations directly to a low-level

language. In doing so, our design tackles unique challenges

imposed by the low-level setting, such as the lack of first-

class functions, lack of garbage collection, and the require-

ment that WebAssembly support safe interoperability with

host languages (e.g., JavaScript).

Another goal of our work is to ensure that our new instruc-

tions align with with WebAssembly’s performance, porta-

bility, and safety objectives. We considered the following

design goals: 1) Common language features, such as green

threads, should be able to compile to efficient Wasm/k code.

2) The extension should lend itself to simple type check-

ing (validation). 3) The extension should lend itself to high-

performance implementation in existing WebAssembly JITs.

4) The extension must be safe. 5) Existing WebAssembly in-

structions and code should suffer no performance penalty.

And 6) the performance of new instructions should be fast

and predictable.

Since the goal of Wasm/k is to provide a better compiler

target language, we also prototyped C/k, an extension to

C/C++ that adds support for delimited continuations. C/k

uses the Emscripten compiler that compiles from C/C++ to

Wasm/k, and we use it to implement programs with a variety

of features, including green threads. We then evaluate the

performance of green threads when implemented with C/k

against the state-of-the-art approach Asyncify [27].

To summarize, we make the following contributions:

1. We design Wasm/k, and present its semantics, valida-

tion, and safety properties.

2. We implement Wasm/k as a modest extension toWasm-

time, which is a real-world WebAssembly JIT.

3. Using Wasm/k and the Emscripten compiler fromC/C++

to WebAssembly, we present C/k, which adds delim-

ited continuations to C/C++.

4. We evaluate the performance of our Wasm/k imple-

mentation by comparing it to a third-party tool that

implements continuations by source-to-source trans-

formation.

2 The Wasm/k Approach

We start by illustrating the basics of WebAssembly and

sketch the compilation strategy that the Go compiler uses to

support Goroutines in WebAssembly (Section 2.1). We then

present Wasm/k, which extendsWebAssembly with first-class

continuations (Section 2.2), and C/k, which extends C/C++

with first-class continuations (Section 2.3). We use C/k to

present green threads, generators, and probabilistic program-

ming in WebAssembly (Section 2.4).

2.1 WebAssembly

WebAssembly is a stack machine with a conceptually in-

dependent control stack and value stack. For example, the

(i64.const 2) instruction pushes the integer 2 onto the value

stack, and the i64.mul instruction pops two integers off the

stack, and pushes their product onto the stack. Similarly,

functions receive their arguments and return their result

on the value stack too. Each function has a collection of

local variables, and can use (local.get $x) to push a local

variable’s or an argument’s value onto the value stack, and

(local.set $x) to pop a value off the stack and update the

variable. Similarly to local variables in C, registers will be

allocated for local variables during JIT compilation. For ex-

ample, the $quadruple function (Figure 2a) quadruples its

argument by calling $helper to first double the argument,

and then doubles the result produced by $helper.

In addition to storing data on the stack and in local vari-

ables, data can also be stored in linear memory (WebAssem-

bly’s heap), which is a byte-addressable region of memory.

Linear memory can be read and written via i32.load and

i32.store respectively, for, e.g., the i32 type. Unlike local

variables, using linear memory will always incur hardware

loads and stores.

Compiling Go toWebAssembly. Goroutines, which are sim-

ilar to green threads (or, user-space threads), are the primary

concurrency abstraction of the Go programming language.
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1 func foo(n int64) float64 {

2 f := float64(0)

3 for k := int64(1); k <= n; k++ {

4 f += 1.0 / float64(k)

5 bar() // thread switch???

6 }

7 return f

8 }

(a) Example Go program

1 (local.set $f (f64.add
2 (f64.load offset=8 (local.get $sp))
3 (f64.div
4 (f64.const 1)
5 (f64.convert_i64_s
6 (i64.load (local.get $sp)))))))

1 (i64.store (local.get $sp)
2 (local.get $k))
3 (f64.store offset=8 (local.get $sp)
4 (local.get $f))
5 (global.set $gsp
6 (local.tee $sp (i32.sub
7 (local.get $sp)
8 (i32.const 8))))
9 (i64.store (local.get $sp)
10 (i64.const 383975427))
11 (call $bar (i32.const 0))
12 (local.set $sp (global.get $gsp))

(b) Code generated by Go

1 (local.set $f (f64.add
2 (local.get $f)
3 (f64.div
4 (f64.const 1)
5 (f64.convert_i64_s (local.get $k)))))

1 (call $bar)

(c)Code generated by Emscripten for equivalent C code

Figure 1. Current WebAssembly code generation by Go and Emscripten.

When compiled to native code, the Go runtime manages a

pool of physical threads and uses them to run several Gorou-

tines on a single thread (a so-calledM :N threading model).

This involves using low-level instructions to save and re-

store the stack and registers’ values, during a (user-space)

context-switch from one Goroutine to another. A context-

switch may occur for a number of reasons, e.g., when the

active Goroutine is blocked on I/O or simply periodically.

While physical threads are discussed in the threading pro-

posal [8] and are available in some WebAssembly runtimes

(e.g. Chrome), switching between goroutines within a single

physical thread in WebAssembly is far more difficult com-

pared to native code, since the WebAssembly stack is not

allocated in linear memory and thus cannot be saved or re-

stored. 2 Instead, the compiler generates code that maintains

a heap-allocated copy of the stack residing in linear memory.

Figure 1a shows an example of a simple function foo in

Go. The function computes a partial sum of a series, and calls

the function bar on each iteration. Since bar may trigger a

thread switch (Go inserts a yield at the start of every func-

tion), the compiler has to generate code to save and restore

foo’s stack.

We sketch the generated code in Figure 1b. Before the call

to bar, the generated code saves the local variables (f and

k) onto the copy of the stack in linear memory (bottom of

Figure 1b). Thus if bar switches to a new Goroutine, the

local variables of foo can be safely discarded. Conversely,

foo reads the values of its local variables from the heap-

allocated stack (top of Figure 1b). Note that no such load or

store instructions need to be emitted when compiling Go to

native code directly, because in native code the Go runtime

can freely manipulate the machine stack.

2This design ensures that a malicious program cannot alter return addresses

to escape the WebAssembly sandbox.

It is instructive to consider how code generation works

for simpler languages, such as C. Given the C equivalent of

foo, the Emscripten compiler from C to WebAssembly gen-

erates much simpler code (Figure 1c), without any loads and

stores to linear memory. Since the code uses WebAssembly

local variables exclusively, a WebAssembly JIT can easily

allocate them to machine registers. (Emscripten does not

support setjmp and longjmp, which can be used to build

green threads in C.)

The additional loads and stores in Go have a cost. In a

call to foo(230), the perf tool shows the Go program exe-

cutes 2.5×more instructions, 3.0×more branches, 1.9×more

loads, and 1.5× more stores than the equivalent C program,

when we compile both to WebAssembly (compiled with op-

timizations and run with node v14.4.0). Overall, the Go

program takes 1.8× longer than the C program. However,

when compiled to native code, the performance of the C and

Go code is nearly identical.

2.2 Wasm/k

Wasm/k adds five new instructions to WebAssembly. 1) The

(control h) instruction captures the current continuation,

stores it a region of memory called the continuation table,

assigns it a new continuation ID (κ), and invokes the function

(h) with a fresh stack, passing the continuation ID and a

user-provided argument. 2) restore receives a continuation

ID as its argument, and restores the associated continua-

tion, discarding the current continuation in the process. It

is a runtime error to restore the same continuation mul-

tiple times. 3) The continuation_copy instruction creates

a copy of a continuation. 4) The continuation_delete in-

struction deletes a continuation without restoring it. 5) The

prompt e∗ end instruction wraps a block of instructions

(e∗), and serves as a delimiter for continuation capture: all

3
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1 (func $helper (param $x i64) (result i64)

2 local.get $x

3 i64.const 2

4 i64.mul)

5 (func $quadruple (param $x i64) (result i64)

6 local.get $x

7 call $helper

8 i64.const 2

9 i64.mul)

(a) This code doubles its input first by calling a helper function, and

then doubling again.

1 (func $handler (param $k i64) (param $x i64)

2 local.get $k

3 local.get $x

4 i64.const 2

5 i64.mul

6 restore)

7 (func $quadruple2 (param $x i64) (result i64)

8 local.get $x

9 control $handler

10 i64.const 2

11 i64.mul)

(b) In contrast, this code captures the current stack, and then jumps

back to that stack.

Figure 2. Two ways to write a function which quadruples

its input.

1 typedef uint64_t k_id;

2 typedef void (*control_handler_fn)(k_id, uint64_t);

3

4 uint64_t control(uint64_t arg, control_handler_fn fn_ptr);

5 void restore(k_id k, uint64_t val);

6 uint64_t continuation_copy(k_id k);

7 void continuation_delete(k_id k);

8 #define prompt(x) <...>

Figure 3. A C/C++ First-Class Continuations Header

continuations captured by e∗ do not extend beyond the call

to prompt.

Figure 2b shows an alternate implementation of $quadruple,

using continuations in a trivial way. The function captures its

continuation and passes it to $handler (line 9), which runs

in the empty continuation. The $handler function receives

two arguments: $k is the captured continuation ID, and $x

is the original argument to $quadruple2, passed through to

$handler. The $handler function doubles its argument and

restores $k, passing the doubled value along. At this point,

the captured continuation will execute (line 10), with the

doubled valued pushed onto the stack. Execution completes

as before by doubling again.

2.3 C/k: Continuations for C/C++

Writing and reading substantial examples in WebAssembly

is tedious. Therefore, the rest of this paper presents examples

using C/C++. We use the Emscripten compiler from C/C++

to WebAssembly, and export the new Wasm/k instructions

to C/C++ programs using the API defined in Figure 3. Each

of these functions call their corresponding instructions in

Wasm/k to manipulate the WebAssembly stack.

However, it is not enough to directly expose the Wasm/k

primitives to C++ code. A program written in C/C++ can get

the memory address of a local variable, which WebAssembly

does not support. Emscripten uses a heap-allocated portion

of the stack to support these programs. Therefore, C/k has to

carefully manage this portion of the stack as well (Section 4).

Adding first-class continuations in this manner to C/C++

is unusual, as typically first-class continuations are a feature

in high-level languages such as Racket, and need to be com-

piled to low-level code which does not support first-class

continuations. By going in the opposite direction, we get

them almost for free in a higher-level language.

2.4 Using Continuations in Wasm/k and C/k

We now present several applications of Wasm/k, using C/k

to write our code.

Green threads. Green threads (or cooperative threads), are

a simple example of an abstraction that is easy to build

with continuations. Figure 4b shows an implementation of

green threads in C/k, which provides functions to create new

threads, wait on threads to complete, and suspend the run-

ning thread and yield control to another thread (thread_yield).

Figure 4a is a small program that uses this threading library.

The key insight is that thread_yield can be accomplished

by capturing the current continuation of the thread via

control (Figure 4b line 37), storing the continuation ID in a

queue (Figure 4b line 33), and dequeue-ing and restoring an-

other continuation ID (Figure 4b line 34). Since green threads

do not need to pass data between threads, we do not utilize

the data arguments to control and restore.

Generators. Generators are a programming abstraction that

are found in a variety of languages, including Python and

JavaScript. Although C does not support generators, we can

build them using control and restore. Figure 5a shows a

program in C/k that prints the numbers 0 through 9, using a

generator function. The generator contains what appears to

be an infinite loop, but each iteration suspends execution in

the generator (gen_yield) and resumes execution in main.

Figure 5b presents the implementation of generators using

C/k. The primary difference between our implementation

and canonical implementations (e.g., in Racket [4]), is that C

does not support first-class functions. Therefore, we repre-

sent a generator as an object (struct) with fields that hold

1) the ID of the continuation where the generator was in-

voked (after_next), 2) the ID of the continuation where

the generator was last suspended (after_yield), and 3) the

next value to return from the generator (value).

Finally, the generator API includes a function to delete a

generator object (free_generator). This function deletes

the continuation within the generator (g->after_yield)

4
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1 void thread_main() {

2 std::cout << "A" << std::endl;

3 thread_yield();

4 std::cout << "B" << std::endl;

5 }

6 int main() {

7 thread_create(thread_main);

8 thread_create(thread_main);

9 join_all_threads();

10 }

(a) Example of use. Prints AABB

1 std::vector<uint64_t> Q;

2 uint64_t after_join;

3 uint64_t dequeue() {

4 uint64_t next_k = Q.back(); Q.pop_back();

5 return next_k;

6 }

7

8 void save_fk_restore(uint64_t fk, uint64_t create_k) {

9 restore(create_k, fk);

10 }

11 void create_handler(uint64_t k, uint64_t f) {

12 control(save_fk_restore, k);

13 ((void (*)())f)();

14 if(Q.size() > 0) {

15 restore(dequeue(), 0);

16 } else {

17 restore(after_join, 0);

18 }

19 }

20 void thread_create(void (*f)()) {

21 Q.insert(Q.begin(), control(create_handler, (uint64_t)f));

22 }

23

24 void join_handler(uint64_t k, uint64_t arg) {

25 after_join = k;

26 restore(dequeue(), 0);

27 }

28 void join_all_threads() {

29 control(join_handler, 0);

30 }

31

32 void yield_handler(uint64_t k, uint64_t arg) {

33 Q.insert(Q.begin(), k);

34 restore(dequeue(), 0);

35 }

36 void thread_yield() {

37 control(yield_handler, 0);

38 }

(b) Implementation.

Figure 4. Green threads in C/k

using continuation_delete (line 38). Note that since the

other continuation (g->after_next) was restored to during

the most recent yield (line 22), it is currently unallocated and

does not need to be deleted. The need for a continuation_delete

instruction is subtle, but is required for natural use cases of

first-class continuations in a low-level language without

garbage collection.

Probabilistic programming. A more involved example is

the implementation of an embedded probabilistic program-

ming language in C++. Probabilistic programming languages

1 void example_generator(Generator *g) {

2 uint64_t i = 0;

3 while(1) { gen_yield(i++, g); }

4 }

5 int main() {

6 Generator *g = make_generator(example_generator);

7 for(int i = 0; i < 10; i++)

8 printf("%llu\n", gen_next(g));

9 free_generator(g);

10 return 0;

11 }

(a) Example of use.

1 typedef struct {

2 k_id after_next, after_yield; uint64_t value;

3 } Generator;

4 // Helpers for converting a function to a continuation

5 void return_convert_result(uint64_t k, uint64_t ak) {

6 restore(ak, k);

7 }

8 void convert_handler(uint64_t k, void (*f)(Generator*)) {

9 f((Generator *)control(return_convert_result, k));

10 }

11 uint64_t convertFuncToCont(void (*f)(Generator*)) {

12 return control(convert_handler, f);

13 }

14 // Allocating a generator

15 Generator *make_generator(void (*f)(Generator*)) {

16 Generator *g = (Generator *)malloc(sizeof(Generator));

17 g->after_yield = convertFuncToCont(f); return g;

18 }

19 // Yielding implementation

20 void yield_handler(k_id k, Generator *g) {

21 g->after_yield = k;

22 restore(g->after_next, g->value);

23 }

24 void gen_yield(uint64_t v, Generator *g) {

25 g->value = v;

26 control(yield_handler, g);

27 }

28 // Next implementation

29 void next_handler(k_id k, Generator *g) {

30 g->after_next = k;

31 restore(g->after_yield, 0);

32 }

33 uint64_t gen_next(Generator *g) {

34 return control(next_handler, g);

35 }

36 // Freeing a generator

37 void free_generator(Generator *g) {

38 continuation_delete(g->after_yield); free(g);

39 }

(b) Implementation.

Figure 5. Generators in C/k.

allow probabilistic models to be implemented declaratively

in general purpose languages. One common approach to

implement a probabilistic programming language is to relate

sampling from a probability distribution to sampling from

a distribution of program executions [21]. Performing this

sampling requires some use of control operators which can

essentially fork execution to allow it to be re-executed (i.e.,

sampled from) multiple times. While the implementation of

a proper probabilistic programming language with modern

5
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1 uint64_t sum_d6() {

2 auto *d6 = new std::vector<uint64_t> {1, 2, 3, 4, 5, 6};

3 return uniform(d6) + uniform(d6);

4 }

5 int main() {

6 std::cout << *driver(sum_d6) << std::endl; return 0;

7 }

(a) Example of use.

1 struct ContinuationThunk {

2 k_id continuation; // The continuation to resume

3 uint64_t value; // The value to pass to the continuation

4 };

5 // vector of thunks which need to be executed

6 std::vector<ContinuationThunk *> to_execute;

7

8 std::map<uint64_t, double> *driver(uint64_t (*body)()) {

9 auto *results = new std::vector<uint64_t>();

10 results->push_back(body());

11 if(rest.size() > 0) {

12 ContinuationThunk *t = rest.back(); rest.pop_back();

13 restore(t->continuation, t->value);

14 }

15 return count_probs(results);

16 }

17

18 void uniform_handler(k_id k, std::vector<uint64_t> *args) {

19 for(auto it = std::next(args->begin());

20 it != args->end(); ++it) {

21 to_execute.push_back(new ContinuationThunk {

22 .continuation=continuation_copy(k),

23 .value=*it});

24 }

25 restore(k, args[0]);

26 }

27 uint64_t uniform(std::vector<uint64_t> *args) {

28 return control(uniform_handler, args);

29 }

(b) Implementation.

Figure 6.An embedded probabilistic programming language

in C++.

sampling algorithms is out of the scope of this paper, we can

nevertheless demonstrate how to implement a probabilis-

tic programming language allowing for finite distributions

embedded in C++.

An example usage of the embedded probabilistic pro-

gramming language is shown in Figure 6a. sum_d6 com-

putes the sum of two independent dice rolls. The call to

driver(sum_d6) will run the sampling algorithm, eventu-

ally returning a map that represents the probability mass

function (PMF) of sum_d6. The proposed API consists of just

a uniform function which represents the uniform distribu-

tion over a discrete set of values (the vector argument) and

the driver function which conducts the sampling to obtain

the final PMF. This API can be easily expanded in this frame-

work to allow for different distributions and conditioning,

but these are omitted for brevity.

The implementation of the API is shown in Figure 6b. The

core idea is that each sample from a distribution will cor-

respond to forking the execution for each sampled value.

For example, if sampling from uniform(1, 2, 3) the ex-

ecution would be forked into 3 executions, one with each

sampled value. The various execution forks are stored in the

to_execute state, in the format of a vector of Continuation-

Thunks (lines 1ś6), which keep track of the continuation to

restore to, and the sampled value to pass to the continuation

upon restoring.

The implementation of driver (lines 8ś16) keeps a vector

of final sampled values, and proceeds by first running the

given function argument (body()) and saving the result,

and then dequeuing a thunk to execute and restoring it.

Supposing that body forked its execution into thunks, then

the call to restore (line 13) will jump back into the execution

of somewhere in body, eventually returning yet again to the

push_back (line 10). Thus, driver will continue to push

results and dequeue a new thunk, until all thunks (samples)

are exhausted. Finally, count_probs computes the desired

map.

With driverworked out, the implementation of uniform

is conceptually straightforward: uniform(args) should fork

the execution for each value in args. This is accomplished

by first immediately calling control (line 28) to capture the

current continuation. Then, for every element except the

first element of args a new thunk is queued, where the con-

tinuation is a copy of the current continuation k (line 22). An

explicit copy of k is required because all of these thunks will

eventually be restored to, and under one-shot continuation

semantics it is invalid to restore to a single continuation (k)

multiple times. Finally, the current continuation is restored

immediately with the first sampled value rather than saved

in a thunk (line 25).

3 Semantics of Wasm/k

This section presents 1) an overview of WebAssembly’s op-

erational semantics, 2) extends the operational semantics to

support continuations, 3) presents type-checking (known as

validation) for this extension, and 4) proves that the exten-

sion is sound.

3.1 WebAssembly Semantics

WebAssembly is formalized as a stack-based, small-step re-

duction semantics. This section introduces a small fragment

of the WebAssembly semantics, using the example program

in Figure 7a. For a more detailed account, we refer the reader

to Haas et al. [18] and the WebAssembly specification [11].

The WebAssembly stack machine contains both instruc-

tions (e) that are pending evaluation and values (v) that were

produced by instructions that have already been evaluated.

The values are a subset of instructions. For example, the

instruction (i64.const n) pushes the 64-bit value n onto the

6
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(i64.const 2) ;; push 2

block ;; enter block

(i64.const 3) ;; push 3

(i64.const 4) ;; push 4

i64.add ;; pop 3 & 4, push 7

(br 0) ;; exit block

end ;; end of block

i64.sub ;; pop 2 & 7, push −5

(a) Example program.

(i64.const 2) block (i64.const 3) (i64.const 4) i64.add (br 0) end i64.sub

֒→ (i64.const 2) label{ϵ } (i64.const 3) (i64.const 4) i64.add (br 0)
︸                                                  ︷︷                                                  ︸

within an L1 context

end i64.sub

֒→ (i64.const 2) label{ϵ } (i64.const 7) (br 0) end i64.sub

֒→ (i64.const 2) (i64.const 7) i64.sub

֒→ (i64.const (−5))

(b) Reduction sequence.

Figure 7. An example of WebAssembly execution.

stack. Moreover, the semantics represents the 64-bit value n

as (i64.const n). In the absence of control flow and function

calls, a configuration of the WebAssembly stack machine has

a sequence of evaluated values (v∗) and a sequence of instruc-

tions (e∗) in succession (v∗e∗), and we always evaluate the

first non-value instruction in the sequence. The boundary

between values and instructions at which evaluation occurs

is called the local context of depth 0 (L0[_]).

WebAssembly has structured control flow, and does not

have goto-style instructions. Instead, the language has struc-

tured control flow blocks (e.g., block . . . end and loop . . . end).

The WebAssembly semantics turns all kinds of blocks into

labelled blocks (label{e∗} . . . end), which are an administra-

tive instruction.3 The nested structure of labelled blocks is

defined by local contexts of depth k (Lk [_]). A local context

of depth 0 (L0[_]) matches a stack of the form v
∗e∗, and a

local context of depth k + 1 matches a local context of depth

k nested inside a labelled block. For example, Figure 7a has

four instructions within an L1 context.

A WebAssembly program is organized as a collection of

modules that import and export code and data. An instanti-

ated module with no unresolved imports is called an instance.

The global execution state of all instances is called the store.

We present Wasm/k as an extension to the WebAssembly

formal semantics, which includes the machinery needed to

support multiple instances. However, for the purpose of this

paper, it is sufficient to consider programs with just one

instance.

The WebAssembly stack, nested control flow, the store,

and instances are the elements of WebAssembly that are

relevant to Wasm/k. With these defined, WebAssembly has

a small-step semantics that updates the stack, and possibly

the store (s) and local variables (v∗
l
) at each step (s ;v∗

l
; e∗ ֒→

s ′;v ′∗
l
; e ′∗). The semantics is congruent with local contexts:

if s;v∗
l
; e∗ ֒→ s ′;v ′∗

l
; e ′∗ then s;v∗

l
;Lk [e∗] ֒→ s ′;v ′∗

l
;Lk [e ′∗].

Thus evaluation always occurs in the innermost local context,

unless no such evaluation is possible. When an instruction

does not read or write from the store, we omit the store for

brevity. Figure 7b shows the execution trace of our example.

3The e∗ is only needed to encode loops, and can be ignored in this paper.

Continuation IDs

κ_id ::= i64

Instructions

e ::= · · ·

| control h

| restore

| continuation_copy

| continuation_delete

| prompt tf e∗ end

Full-Stack Contexts

Lmax ::= v∗[_]e∗ | v∗ labeln {e
∗ } Lmax end e∗

Stores

s ::= {inst inst∗, · · · }

Instances

inst ::= {func cl ∗, glob v∗
, tab i?,mem i?, pstack pstack }

Continuation Table Stacks

pstack ::= pinst∗

Continuation Tables

pinst ::= {ctable ({locals v∗
, ctx Lmax

, inst i } | nil)∗ , root (κ_id | nil)}

Figure 8. Syntax of Wasm/k: we extend the WebAssembly

runtime structure with a table of continuations.

3.2 Design and Semantics of Wasm/k

We first describe the new values and types of Wasm/k, then

present necessary changes to WebAssembly instances, and

finally present the new reduction rules of Wasm/k.

The continuation table and continuation IDs. In a lan-

guage that supports first-class continuations, a continuation

is a new kind of value. First-class continuations are typi-

cally found in high-level languages (e.g., Scheme or Racket)

that also support first-class functions. This allows functions

that receive captured continuations (e.g., the argument to

call/cc in Scheme) to close over other variables in their

environment. However, this is not possible in WebAssem-

bly, since it lacks first-class functions. Moreover, it is not

straightforward to safely add new kinds of values to WebAs-

sembly either. (The WebAssembly heap is untyped and byte-

addressable, so a program can make arbitrary changes to the

representation of any value stored on the heap.) Wasm/k adds

a continuation table, which associates a continuation with

7
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an integer-valued continuation ID (κ_id). The Wasm/k run-

time system manages the table, and Wasm/k programs work

with continuations indirectly by referring to their ID. Since

continuation IDs are standard integers, programs can use ex-

isting load and store instructions to save continuation IDs in

linear memory. However, the new Wasm/k instructions have

to dynamically ensure that they receive valid continuation

IDs. Our implementation uses 64-bit integers to represent

continuation IDs.

Wasm/k has delimited continuations, which are needed

to safely interoperate with host languages such as Java-

Script (Section 3.4). Thus Wasm/k includes a prompt instruc-

tion, and we modify instances to track a stack of dynamic

prompt scopes. Formally, we extend instances as follows

(highlighted in Figure 8). Each instance (inst) contains a

stack of dynamically nested prompt contexts. Each prompt

context (pinst) is a record containing a continuation table

and a continuation ID of the root continuation, defined to be

the continuation associated with the stack which initialized

the WebAssembly execution or most recent prompt. The

continuation table consists of an array of entries, where each

entry is either nil or a captured continuation, with all entries

initialized to nil.4

A continuation saved in a continuation table is a record

that contains the values of local variables (across all stack

frames), and the entire evaluation context at the point of

capture. However, WebAssembly’s local context (Lk ) only

capture a stack with k nested blocks. Therefore, we define

full-stack contexts (Lmax) as evaluation contexts that match a

stack with arbitrary control block depth, and a continuation

stores a full-stack context.

Finally, the root continuation ID in a continuation table

is maintained such that if the root continuation is currently

executing, root will be set to nil, otherwise root will be set

to the index κR of the root continuation in the continuation

table.

New reduction rules. The semantics of WebAssembly de-

fine a reduction relation (֒→) that is congruent with local

contexts ([Cong] in Figure 9). However, full congruence with

local contexts does not hold in the presence of first-class

continuations. Therefore, Wasm/k introduces a new reduc-

tion relation (⇝) for programs that contain (control h) and

restore instructions (Figure 9). The extended semantics refer

to the original WebAssembly reduction relation (֒→), using

the [Cong] rule, but there is no equivalent rule for⇝. If

there is a reduction which involves no use of (control h) or

restore, then it is also a valid reduction which might make

use of (control h) or restore, as given in the [No-Ctrl] rule.

4To control resource utilization, WebAssembly implementations can define

the maximum size of various dynamic and static data structures, e.g., the

number of stack frames. Similarly, we impose an implementation-dependent

bound on the number of allocated continuations.

The (control h) instruction receives a single argument (v)

and calls the function h, passing it a new continuation ID

(κ) and the argument v . The continuation ID is bound to the

current continuation (Lmax) and local variables (v∗
l
), and the

call to h is followed by a trap: i.e., it is a runtime error to

return normally from h. For simplicity, (control h) makes a

direct call to a function h. However, when an indirect call

is necessary, it is possible to use v to pass the index of a

function to h.

The restore instruction receives a continuation ID (κ) and

a restore value (v). The instruction dynamically checks that

κ is a valid continuation ID. If κ is valid, it restores the local

variables (v∗
l
′) and the stack (Lmax ′) that is associated with κ,

and returnsv to the stack. The restore instruction also marks

the continuation ID (κ) as nil in the continuation table, which

allows it to be reused by subsequent calls to (control h). Fi-

nally, when restoring the root continuation, restore sets the

root ID back to nil, and leaves it untouched otherwise. Note

that restore is abortive rather than functional, in the sense

that restore aborts the current continuation and instructions

following restorewill never be executed. It is a runtime error

to call restore on a continuation ID (κ) that is un-allocated,

or to invoke restore within the root continuation. In either

case, a trap occurs.

We need the continuation_copy instruction to create a

copy of a saved continuation, so that a program can re-

store a continuation several times if needed. This instruc-

tion assigns a new continuation ID to the copy. A trap oc-

curs if the provided continuation ID is mapped to nil. The

continuation_delete instruction deallocates an continuation

without restoring it, and may be needed to avoid memory

leaks in certain applications.

In the presence of first-class continuations, a function f

may now never return to the call site or may return mul-

tiple times. Motivated by a need for safe FFI, the goal of a

prompt tf e∗ end instruction 5 is to evaluate the body e∗

such that e∗ is guaranteed to finish evaluation exactly once

(or trap/diverge), and trap otherwise. Note that this is simi-

lar to Felleisen’s prompt [15], but in cases where Felleisen’s

prompt alters the control flow, Wasm/k’s prompt traps. This

design is due to the fact that our restore operator is abortive

rather than functional. Evaluation of prompt tf e∗ end in-

volves first pushing a prompt context onto the prompt stack

with a blank continuation table and the root ID set to nil, then

executing e∗ inside a scoped block, and finally executing the

administrative non-user accessible instruction prompt_end.

Note that if e∗ were to contain branches to labels outside of

the prompt, the execution of prompt_end could be skipped.

The validation rules discussed below outlaw such branches.

The safety properties of prompt during FFI is discussed in

5tf is a type annotation of the body (e∗) of the prompt, and is not important

to understand the semantics.
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s ; v∗; e∗ ⇝i s ; v
∗; e∗

[Cong]
s ; v∗; e∗ ֒→i s

′; v ′∗; e′∗

s ; v∗; Lk [e∗] ֒→i s
′; v ′∗; Lk [e′∗]

[No-Ctrl]
s ; v∗; e∗ ֒→i s

′; v ′∗; e′∗

s ; v∗; e∗ ⇝i s
′; v ′∗; e′∗

[Ctrl] s ; v∗
l
; Lmax[(i64.const v) (control h)]⇝i s

′; ϵ ; (i64.const κ) (i64.const v) (call h) trap if (s′, κ) = δctrl(s , i , v
∗
l
, Lmax)

[Restore] s ; v∗
l
; Lmax[(i64.const κ) (i64.const v) restore]⇝i s

′; v∗
l

′; Lmax′[(i64.const v)] if (s′, v∗
l
, Lmax′) = δrest(s , i , κ)

[Restore-Err] s ; v∗
l
; Lmax[(i64.const κ) (i64.const v) restore]⇝i s ; v

∗
l
; trap otherwise

[Copy] s ; (i64.const κ) continuation_copy ֒→i s
′; (i64.const κ′) if (s′, κ′) = δcopy(s , i , κ)

[Copy-Err] s ; (i64.const κ) continuation_copy ֒→i s ; trap otherwise

[Delete] s ; (i64.const κ) continuation_delete ֒→i s
′; ϵ if s′ = δdelete(s , i , κ)

[Delete-Err] s ; (i64.const κ) continuation_delete ֒→i s ; trap otherwise

[Prompt] s ; prompt tf e∗ end ֒→i s
′; block tf e∗ end prompt_end if s′ = δp(s , i)

[Prompt-End] s ; prompt_end ֒→i s
′; ϵ if s′ = δp-end(s , i)

δctrl(s , i , v
∗
l
, Lmax) ::=

{

(setCont(setRoot(s , i , κ), i , κ , {locals = v∗
l
, ctx = Lmax

, inst = i }), κ) if getRoot(s , i) = nil

(setCont(s , i , κ , {locals = v∗
l
, ctx = Lmax

, inst = i }), κ) if getRoot(s , i) , nil

where κ is fresh, i.e., getCont(s , i , κ) = nil

δrest(s , i , κ) ::=

{

(setRoot(setCont(s , i , κ , nil), i , nil), getCont(s , i , κ)locals, getCont(s , i , κ)ctx) if getRoot(s , i) = κ

(setCont(s , i , κ , nil), getCont(s , i , κ)locals, getCont(s , i , κ)ctx) if nil , getRoot(s , i) , κ

δcopy(s , i , κ) ::= (setCont(s , i , κ′
, getCont(s , i , κ)), κ′) if getRoot(s , i) , κ ∧ getCont(s , i , κ) , nil

where κ′ is fresh, i.e., getCont(s , i , κ′) = nil

δdelete(s , i , κ) ::= setCont(s , i , κ , nil) if getRoot(s , i) , κ ∧ getCont(s , i , κ) , nil

δp(s , i) ::= s
′ where s′ = s except s′inst(i)pstack 7→ push(sinst(i)pstack, {ctable = nil∗, root = nil, inst = i })

δp-end(s , i) ::= s
′ where s′ = s except s′inst(i)pstack 7→ pop(sinst(i)pstack) if getRoot(s , i) = nil

getRoot(s , i) ::= top(sinst(i)pstack)root

getCont(s , i , κ) ::= top(sinst(i)pstack)ctable(κ)

setRoot(s , i , κ?
R
) ::= s′ where s′ = s except top(s′inst(i)pstack)root 7→ κ?

R

setCont(s , i , κ , γ ?) ::= s′ where s′ = s except top(s′inst(i)pstack)ctable(κ) 7→ γ ?

Figure 9. Semantics of Wasm/k.

Section 3.4. Evaluating a prompt_end instruction pops and

discards the top prompt context from the prompt stack.

3.3 Validation

Validation (type checking) is accomplished in WebAssembly

by assigning each instruction a type describing the values

it pops from the stack and the values it pushes onto the

stack. For example, the type of an add instruction (i32.add) is

i64 i64 → i64. In addition, the context (C) stores information

during the type checking algorithm, such as the types of

functions.

Figure 10 shows the type checking rules for Wasm/k. The

type checking of Wasm/k fits easily into the existing type

checking framework of WebAssembly, since we check dy-

namically that continuation IDs are valid, similar to the type

checking of indirect function calls.

The type checking of restore, continuation_copy, and

continuation_delete instructions is straightforward as they

are all typed independent of the context (C). In particular,

these instructions do not statically type check validity of

continuation IDs, beyond being the correct type (i64), since

the semantics in Figure 9 check continuation ID validity at

runtime. The type checking of a (control h) instruction does

involve checking a side condition in the context: in order to

type check (control h), the handler function (h) is looked up

in the context (C), and checked to have the correct type of

a control handler function (receives two i64 arguments and

returns nothing).

Type checking the prompt instruction is the most inter-

esting case. Semantically, prompt tf e∗ end must 1) prepare

the prompt environment, 2) execute e∗, and 3) teardown the

prompt environment (i.e., execute the prompt_end adminis-

trative instruction). However, consider that e∗ may contain

9
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C ::= {. . . , label ((t ∗)∗)∗, pstack{ctable(t ∗ | nil)∗, root(κR | nil)}∗ }

Cfunc(h) = i64 i64 → ϵ

C ⊢ (control h) : i64 → i64

C ⊢ restore : t ∗1 i64 i64 → t ∗2

C ⊢ continuation_copy : i64 → i64

C ⊢ continuation_delete : i64 → ϵ

tf = tn1 → tm2 C {label = Clabel; ((t
m

2 )), return = ϵ } ⊢ e∗ : tf

C ⊢ prompt tf e∗ end : tf

Figure 10. Type Checking of Wasm/k.

[Root]
⊢i s ; v

∗; e∗ : t ∗ ⊢ s : S Sinst(i)roots = nil∗

⊢k
i
s ; v∗; e∗ : t ∗

[Non-Root]

⊢ s : S
⊢i s ; v

∗; e∗ : t ∗
pR = max{p | Sinst(i)pstack(p)root , nil }

κR = Sinst(i)pstack(pR )root

⊢k
i
s ; v∗; e∗ : Sinst(i)pstack(pR )ctable(κR )

Figure 11. Typing delimited instructions.

branch instructions jumping to labels lexically outside of the

prompt, which would then incorrectly be able to jump be-

yond tearing-down of the prompt environment. To remedy

this, we use the type checker to outlaw branching instruc-

tions which jump beyond the scope of the prompt, though

still allow branches within the prompt.

We extend type-checking contexts (C) to store a stack of

stacks of labels, as shown in the top of Figure 10 (label((t∗)∗)∗).

Implicitly, we define the notation of context label extension

C, label(t∗) used in previous WebAssembly type checking

rules to mean that the label (t∗) is pushed onto the top-most

stack in C (or in a new stack if none exist), and likewise

the notation Clabel(i) we define to mean indexing by i into

the top-most stack in C . These implicit re-definitions allow

all the other WebAssembly type checking rules to remain

untouched. With this machinery in place, the type checking

rule for prompt can be given, which closely mirrors the type

checking rule of block, except that an entire new label stack

is pushed into the context and the return label is invalidated.

An alternative approach could be to modify the semantics

to force the prompt_end instruction to be run even when

branching past it. However, this would require significant

changes to how branch instructions are specified in the Web-

Assembly semantics, and would significantly impact code

generation.

3.4 Safety Properties of Wasm/k

We first prove the safety of Wasm/k, building on the safety

of WebAssembly. We then consider safe interoperation with

a host language.

Safety of standalone Wasm/k. WebAssembly is equipped

with a syntactic type soundness theorem [18, 19, 25], which

we build on.

WebAssembly’s instruction typing relation (⊢i e
∗; t∗) cal-

culates a sequence of types (t∗), which specify the types of

the values that are left on the stack by the instructions (e∗).

These types are preserved by each step of evaluation (֒→).

However, if a step captures or restores a continuation (⇝),

the type of the current instruction sequence may change.

To address this, we introduce a new typing relation (⊢ki )

which extracts the type of the unique stack nested most

deeply in prompts which has been invoked through a chain

of root stacks (Figure 11). We call this stack the primary root

stack. There are two cases to this relation: 1) when the current

instruction sequence is the primary root stack, we return

its type ([Root]), and 2) if not, we extract the type of the

saved primary root stack from the store ([Non-Root]). Using

this typing relation, we prove progress and preservation for

Wasm/k.

Theorem 3.1 (⇝ Preservation). If ⊢ki s; v∗; e∗ : t∗ and

s; v∗; e∗ ⇝i s
′; v ′∗; e ′∗, then ⊢ki s ′; v ′∗; e ′∗ : t∗.

Theorem 3.2 (⇝ Progress). If ⊢ki s;v∗; e∗ : t∗, then either

e∗ = v ′∗ or e∗ = trap or s;v∗; e∗ ⇝i s
′;v ′∗; e ′∗.

The proofs of both theorems are available in the appendix.

Safe interoperation. AWebAssembly runtime environment

is typically embedded in a host language, and offers an

API that allows function calls from either language to the

other. For example,Wasmtime supports interoperability with

Rust, and web browsers support interoperability with Java-

Script. Neither Rust nor JavaScript support continuations,

and require foreign function calls to return exactly once.

The prompt operator allows us to enforce this dynamically.

Wasm/k automatically inserts a prompt block around a for-

eign call into Wasm/k. This design is similar to Scheme /

Racket, but differs in two regards. First, Scheme / Racket

allow FFI to be unsafe as they do not forcibly wrap every FFI

call in a prompt, while Wasm/k prioritizes safety over some

flexibility. Second, Scheme / Racket will not abort the pro-

gram upon control flow which violates the exactly-once se-

mantics of prompt, but will instead alter the control flow [15].

In keeping with using prompt strictly to enforce FFI safety,

Wasm/k considers it a programmer error to attempt to violate

such safety.

4 Leveraging Wasm/k in Existing Compilers

Since Wasm/k does not alter the semantics of existing Web-

Assembly instructions, it ought to be easy to use Wasm/k

10
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to implement continuations in an existing compiler. How-

ever, today’s compilers use code generation techniques that

require a little extra care.

For example, consider Emscripten, which compiles C to

WebAssembly. A typical C compiler would allocate local vari-

ables on the machine stack, and Emscripten is no exception.

However, whereas a C program can obtain a pointer to a

local, stack-allocated variableÐa common operation in C

programsÐit is not possible to do so in WebAssembly. The

WebAssembly stack is not stored in linear memory, and pro-

grams can only obtain pointers to values in linear memory.

Therefore, to support these programs, Emscripten allocates

local variables on the WebAssembly stack when possible,

but uses linear memory when necessary. Emscripten gen-

erates code that reserves a block of memory to store the

heap-allocated portion of the stack, and uses global variables

that emulate stack and frame pointers.

Section 2.3 presented C/k, which extends Emscripten with

continuations. Our extension adds new library functions

that each correspond to a Wasm/k instruction, which manage

saving and restoring the WebAssembly stack. However, we

need to ensure that these operations correctly save and re-

store the heap-allocated portion of the stack (Wasm/k cannot

do this automatically, since it is source-language neutral).

Therefore, we insert code at the call site for each C/k opera-

tion to manipulate Emscripten’s global stack pointer values.

For example, at a call site of control, we insert code that

saves the current heap-allocated portion of the stack and the

value of the stack pointer into a table. Similarly, at a call site

of restore, we insert code that restores the heap-allocated

portion of the stack and stack pointer from the table.

This problem is not unique to Emscripten. For example,

the Go compiler’s WebAssembly backend creates a copy of

theWebAssembly stack in linear memory to support garbage

collection and Goroutines. We speculate that Wasm/k would

allow the Go compiler to store non-pointer variables on the

WebAssembly stack, which may improve the performance

of numeric code. However, GC roots would still have to be

stored in linear memory.

5 Implementation

We implement Wasm/k as an extension to Wasmtime, which

is a standalone, JIT-based runtime system for WebAssem-

bly.6 Wasmtime is written in Rust and primarily developed

by Mozilla. Wasmtime, and other WebAssembly JITs, use

the native machine stack to store both values and return ad-

dresses. Wasmtime also performs register allocation to avoid

using the stack when possible. Therefore, our Wasm/k imple-

mentation has to manage the native stack and registers, and

take care to follow the calling convention that Wasmtime

employs.

6Our implementation is available at https://wasmk.github.io.
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Figure 12. Performance of green threads implemented us-

ing Wasm/k and Asyncify in a ray tracing application 7. All

experiments were performed on a 64 bit 3.3GHz 4-Core CPU

on Ubuntu. Error bars show the 95% confidence interval of

the overhead, over six trials.

Capture and restore. The implementation of (control h)

involves several steps. 1) It uses a free list to allocate an un-

used continuation ID. 2) It associates this continuation ID

with a new continuation object, which holds the values of

machine registers that are not caller-saved, which includes

the stack and instruction pointers. 3) It allocates a new block

of memory to hold subsequent stack frames, and sets the

stack pointer to point to this block of memory. 4) It jumps to

the WebAssembly function h, which receives the new contin-

uation ID. To further improve performance, we preallocate a

pool of memory to hold new stacks.

The implementation of restore is straightforward, since

its principal task is to restore the registers saved by control

in the continuation object. To ensure safety, we 1) ensure that

the continuation ID is associated with a valid continuation

object, 2) delete the continuation object so that it cannot

be restored again, and 3) reclaim the memory used by the

current stack.

Copying continuations. To copy a continuation, we allo-

cate a new continuation ID, and duplicate a continuation

object, but have to carefully tackle all pointers within the

continuation object. The continuation object stores an in-

struction pointer, which can be freely copied. However, we

have to update the saved stack pointer to point to the dupli-

cate copy of the saved stack. This is sufficient for Wasmtime,

but other implementations may require extra work. For ex-

ample, if an implementation stores pointers into the stack

in registers or on the stack itself, they must be updated to

point to the copy.

11
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6 Evaluation

In this section we compare Wasm/k to the natural alterna-

tive: which is to implement continuations using a whole

program transformation that doesn’t require any change to

WebAssembly.

Asyncify [27] is a tool that simulates non-blocking I/O in

WebAssembly. It extends WebAssembly with control opera-

tors that are similar to one-shot continuations, and outputs

standard WebAssembly that simulates control flow. We use

both Wasm/k and Asyncify to implement a green threading

library (Section 2.4), which allows us to directly compare the

performance of threaded programs.

As a benchmark, we use C-Ray [1], which is a ray tracer im-

plemented in approximately 9,500 lines of C. Ray tracers are

compute-intensive, and take a long time to render the final,

full-quality image. However, because they can compute lower

quality rendering approximations incrementally, it should be

possible to display incremental rendering results, to appear

more responsive to the user. C-Ray performs rendering com-

putations on background threads (using pthreads), while

the main thread periodically displays the current scene. We

ported C-Ray to use our green threading library, and inserted

thread yields in the main rendering loop, which yielded ap-

proximately once every 25 ms.

Code size. Code size is particularly important forweb browsers,

which download code on demand, and a key factor of Web-

Assembly’s design is that it has a compact binary file format.

The size of the C-Ray WebAssembly program is 1.3× larger

with Asyncify than it is with Wasm/k.

Performance. Figure 12 shows the time needed to complete

ray tracing on five different visual scenes using Wasm/k and

Asyncify, with the geometric mean over all scenes shown

in the last two columns on the right. As a baseline, we use

C-Ray running in WebAssembly with no threading. Note

that the baseline has limited utility, since it cannot show

intermediate results. However, it does illustrate the overhead

that both Wasm/k and Asyncify introduce. The mean running

time of Wasm/k is 1.1× the running time without threads.

In contrast, the mean running time of Asyncify is 1.3× the

running time without threads. Asyncify is slower, since it

introduces several loads, stores, and branches to the compiled

code. The smaller slowdown that Wasm/k introduces is the

cost of checking whether it is time to switch threads.

7 Related Work

WebAssembly. Wasm/k extends the formal semantics ofWeb-

Assembly 1.0 [18]. There are several proposed extensions to

WebAssembly 1.0, not all of which have been implemented

in production web browsers. The threading proposal [8]

7Commit 21124ee of the C-Ray fork available at https://wasmk.github.io

was used in this experiment.

extends WebAssembly with support for atomic memory op-

erations and synchronization primitives, but leaves the API

for thread creation up to each WebAssembly runtime imple-

mentation. Thus far, the pthread API has been supported

in some browsers. Watt et al. build on the threading pro-

posal by formalizing a semantics and memory model for

concurrent WebAssembly [26]. This work on robust support

for concurrency via physical threads is an important step

for WebAssembly, and is orthogonal and complimentary to

Wasm/k: both aspects are needed for efficient implementa-

tions of goroutines which can utilize all CPU cores.

Another proposal extends WebAssembly with support

for exception handling [3], which is a form of limited stack

manipulation. An interesting question of semantics not ad-

dressed in this work is how Wasm/k would interact with

exception handling. In this direction, there is prior work

on supporting both delimited continuations and exception

handling [16].

An alternative to supporting continuations natively is to

implement them by source-to-source transformation [12,

22]. Asyncify [27] does so for WebAssembly, and the Go

compiler uses a similar approach to support Goroutines. Our

evaluation (Section 6) shows that Wasm/k is significantly

faster than source-to-source transformation, and produces

smaller programs.

A recent discussion sketched an alternative design for

WebAssembly continuations [23] that is based on extend-

ing exception handlers with general effect handlers. Our

design is orthogonal to exception handling and makes fewer

changes to the WebAssembly 1.0 type system. To the best of

our knowledge, this alternative design has not been imple-

mented at this time.

Finally, there exist related strategies of program execu-

tion control. Existing interpreters or virtual machines which

feature execution control mechanisms can be compiled to

WebAssembly, such as the Lua VM (implemented in C) [10]

which features coroutines. This is certainly a viable and

straightforward strategy to allow stack-manipulating code

to run in a WebAssembly environment, but may not be able

to achieve performance comparable to compiling to Web-

Assembly. In addition, debuggers can be seen as a form of

execution control, as code can be paused and resumed, but

unlike with first-class continuations, the program control is

not internally observable. Debugger support for WebAssem-

bly has recently been explored in the context of microcon-

trollers [17].

Continuations. We adapt Sitaram and Felleisen’s control

operator [24] for WebAssembly. Our design accounts for the

fact that WebAssembly has neither first-class functions, nor

garbage collection: programs must explicitly delete unused

continuations, and our new control operators take additional

arguments that are not necessary in languages that support

12
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closures. We rely on control delimiters to ensure that Web-

Assembly programs always safely interoperate with host

languages that do not support continuations, such as Java-

Script. However, it should be possible to adapt other control

operators as well [13, 15].

A goal of Wasm/k is to show that delimited continuations

can be implemented efficiently in a modern WebAssembly

JIT. Our implementation uses a contiguous stack, since it

does not require global changes to code generation. However,

there are a variety of other implementation strategies with

different tradeoffs [14].

8 Conclusion

We have presented Wasm/k, an extension to WebAssembly

that adds support for delimited one-shot continuations with

explicit copying. We have prototyped all phases of Wasm/k,

with examples in C/C++, code generation from C/C++ to

Wasm/k, formal semantics of Wasm/k, and an efficient imple-

mentation of Wasm/k in an existing JIT. We hope that Wasm/k

is a step toward helping WebAssembly be an effective com-

pilation target for a large variety of high-level languages.
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A Appendix

A.1 Continuation Table Typing Relation

Figure 11 presented the core rules for the continuation table typing relation ⊢ki . Figure 11 relies on an extension of the

WebAssembly store typing, in which a store s is given a type S , now extended with the pstack field as shown in Figure 10.

Modifications to existing WebAssembly store typing rules and additional rules are required to compute the pstack field of S .

These modifications and new rules are given in Figure 13, where modified WebAssembly rules are marked with a (†).

(S ⊢ cl : tf )∗ (⊢ v : t )∗ (Stab(i) = n)
? (Smem(j) =m)? (S ; ϵ ⊢ci v

∗
l
; Lmax[(i64.const 0)] : tk∗)?∗∗ (ctable(κR ) , nil)?∗

S ⊢ {func cl∗, glob v∗
, tab i?,mem j?, pstack {ctable ({locals v∗

l
, ctx Lmax

, inst ci} | nil)∗, root(κR | nil)}∗ }

: {func tf ∗, global (mut? t )∗, table n?
,memorym?

, pstack{ctable(tk∗ | nil)∗, root(κR | nil)}∗ }

(†)

[Prompt-End]
Sinst(i)pstack(0)root = nil

S ; C ⊢i prompt_end : ϵ → ϵ

Figure 13. Additional Store Typing Rules.

In addition, we define the shorthand notation Sinst(i)roots used in Figure 11 to be the vector Sinst(i)pstack(·)root.

A.2 Proofs of Type Safety Properties

Lemma A.1 (Context Substitution). If

1. ⊢i s; v
∗; Lk [e∗] : t∗, and

2. ⊢i s; v
∗; e∗ : t∗e , and

3. ⊢i s; v
∗; e ′∗ : t∗e ,

then ⊢i s; v
∗; Lk [e ′∗] : t∗

Proof. This is a direct consequence of the transitive rule for WebAssembly type checking. □

Theorem A.2 (⇝ Preservation). If ⊢ki s; v∗; e∗ : t∗ and s; v∗; e∗ ⇝i s
′; v ′∗; e ′∗, then ⊢ki s ′; v ′∗; e ′∗ : t∗.

Proof. Suppose that:

H1) ⊢ki s; v∗; e∗ : t∗ and

H2) s; v∗; e∗ ⇝i s
′; v ′∗; e ′∗

We want to show that ⊢ki s ′; v ′∗; e ′∗ : t∗.

By H1 and the typing rules [Root] and [Non-Root] for ⊢ki , we know:

H3) ⊢ s : S

Based on the [Root] and [Non-Root] typing rules for H1, there are two cases:

Case C1 Sinst(i)roots = nil∗. In this case we also know:

H4) ⊢i s; v
∗; e∗ : t∗

By H2 there are 10 subcases to consider:

Case C1.1 s ;v∗;Lmax[(i64.const v)(control h)]⇝i s
′; ϵ ; (i64.const κ) (i64.const v) (call h) trap∧(s ′,κ) = δctrl(s, i,v

∗
, Lmax)

By Case C1 and C1.1:

H5) δctrl(s, i,v
∗
, Lmax) = (s ′,κ) = (setCont(setRoot(s, i,κ), i,κ, {locals = v∗

l
, ctx = Lmax}),κ)

H6) getCont(s, i,κ) = nil

By H3 and H5 we can type check s ′:

H7) ⊢ s ′ : S ′

H8) S ′inst(i)pstack(0)root = κ

H9) ∀p ≥ 1, S ′inst(i)pstack(p)root = nil

We can compute the type of the stored stack in s ′. By Lemma A.1, H4 and H5:

H10) S ′inst(i)pstack(0)ctable(κ) = t∗

The new stack can be independently type checked. By the control type checking rule, S ′inst(i)func(h) = i64 i64 → ϵ .

Thus,

H11) ⊢i s
′; ϵ ; (i64.const κ)(i64.const v)(call h)trap : ϵ

By H7, H8, H9, H10, H11 and the [Non-Root] rule:

14
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H12) ⊢ki s ′; ϵ ; (i64.const κ)(i64.const v)(call h)trap : t∗

Case C1.1 is complete.

Case C1.2 s;v∗;Lmax[(i64.const κ)(i64.const v)restore]⇝i s
′; v ′∗; Lmax ′[(i64.const v)] ∧ (s ′,v∗

, Lmax ′) = δrest(s, i,κ)

By C1.2 getRoot(s, i) , nil. However this is a contradiction with case C1 which implies getRoot(s, i) = nil.

Therefore, Case C1.2 is impossible.

Case C1.3 s;v∗;Lmax[(i64.const κ)(i64.const v)restore]⇝i s; v
∗; trap ∧ δrest(s, i,κ) undefined

By the type checking of trap,

H13) ⊢i s; v
∗; trap : t∗

By Case C1, H3, H13, and the [Root] rule, we conclude:

H14) ⊢ki s; v∗; trap : t∗

Case C1.3 is complete.

Case C1.4 s;v∗;Lk [(i64.const κ)continuation_copy] ֒→i s
′;v∗;Lk [(i64.const κ ′)] ∧ (s ′,κ ′) = δcopy(s, i,κ)

By Case C1.4:

H15) δcopy(s, i,κ) = (s ′,κ ′) = (setCont(s, i,κ ′
, getCont(s, i,κ)),κ ′)

H16) getCont(s, i,κ ′) = nil.

By H4, Case C1.4, and Lemma A.1,

H17) ⊢i s
′; v∗; Lk [(i64.const κ ′)] : t∗

By H3, there exists a type for the stack that is being copied:

H18) ∃t ′∗, Sinst(i)pstack(0)ctable(κ) = t ′∗

By Case C1, H15, H18, and the store typing relation,

H19) ⊢ s ′ : S ′

H20) S ′inst(i)roots = nil∗

By H17, H19, H20 and the [Root] rule:

H21) ⊢ki s ′;v∗;Lk [(i64.const κ ′)] : t∗

Case C1.4 is complete.

Case C1.5 s;v∗;Lk [(i64.const κ)continuation_copy] ֒→i s;v
∗;Lk [trap] ∧ δcopy(s, i,κ) undefined

By the type checking of trap, H4, and Lemma A.1,

H22) ⊢i s; v
∗; Lk [trap] : t∗

By Case C1, H3, H22, and the [Root] rule, we conclude:

H23) ⊢ki s; v∗; Lk [trap] : t∗

Case C1.5 is complete.

Case C1.6 s;v∗;Lk [(i64.const κ)continuation_delete] ֒→i s
′;v∗;Lk [ϵ] ∧ s ′ = δdelete(s, i,κ)

By Case C1.6:

H24) δdelete(s, i,κ) = s
′
= setCont(s, i,κ, nil)

By H4, Case C1.6, and Lemma A.1,

H25) ⊢i s
′; v∗; Lk [ϵ] : t∗

By Case C1, H24, and the store typing relation,

H26) ⊢ s ′ : S ′

H27) S ′inst(i)roots = nil∗

By H25, H26, H27 and the [Root] rule:

H28) ⊢ki s ′;v∗;Lk [ϵ] : t∗

Case C1.6 is complete.

Case C1.7 s;v∗;Lk [(i64.const κ)continuation_delete] ֒→i s;v
∗;Lk [trap] ∧ δdelete(s, i,κ) undefined

By the type checking of trap, H4, and Lemma A.1,

H29) ⊢i s; v
∗; Lk [trap] : t∗

By Case C1, H3, H29, and the [Root] rule, we conclude:

H30) ⊢ki s; v∗; Lk [trap] : t∗

Case C1.7 is complete.

Case C1.8 s;v∗;Lk [prompt tf e∗ end] ֒→i s
′;v∗;Lk [block tf e∗ end prompt_end] ∧ s ′ = δp(s, i)

By Case C1.8:

H31) δp(s, i) = s
′ where s ′ = s except s ′inst(i)pstack 7→ push(sinst(i)pstack, {ctable = nil∗, root = nil})

By H4, H31, the type checking of prompt, and Lemma A.1,

H32) ⊢i s
′; v∗; Lk [block tf e∗ end prompt_end] : t∗

15



DLS ’20, November 17, 2020, Virtual, USA Donald Pinckney, Arjun Guha, and Yuriy Brun

By H3, H31 and store typing:

H33) ⊢ s ′ : S ′

H34) S ′inst(i)roots = nil∗

By H32, H33, H34 and the [Root] rule:

H35) ⊢ki s ′; v∗; Lk [block tf e∗ end prompt_end] : t∗

Case C1.8 is complete.

Case C1.9 s;v∗;Lk [prompt_end] ֒→i s
′;v∗; Lk [ϵ] ∧ s ′ = δp-end(s, i)

By Case C1.9:

H36) δp-end(s, i) = s
′ where s ′ = s except s ′inst(i)pstack 7→ pop(sinst(i)pstack)

By H4, H36, the type checking of prompt_end, and Lemma A.1,

H37) ⊢i s
′; v∗; Lk [ϵ] : t∗

By H3, H36 and store typing:

H38) ⊢ s ′ : S ′

H39) S ′inst(i)roots = nil∗

By H37, H38, H39 and the [Root] rule:

H40) ⊢ki s ′; v∗; Lk [ϵ] : t∗

Case C1.9 is complete.

Case C1.10 s;v∗; e∗ ֒→i s
′;v ′∗; e ′∗ for some redex in standard WebAssembly.

Since standard WebAssembly redexes do not modify the continuation tables, ⊢ s ′ : S ′ where S ′inst(i)roots = nil∗.

Therefore, by H4, the Preservation theorem of standard WebAssembly, and the [Root] rule:

H41) ⊢ki s ′; v ′∗; e ′∗ : t∗

Case C1.10 is complete.

Case C2 ∃pr s.t. pr = max{p | Sinst(i)pstack(p)root , nil} . In this case we also know:

H42) κR = Sinst(i)pstack(pR )root
H43) ∃t̃∗ ⊢i s; v

∗; e∗ : t̃∗

H44) t∗ = Sinst(i)pstack(pR )ctable(κR )

By H2 there are 10 subcases to consider:

Case C2.1 s ;v∗;Lmax[(i64.const v)(control h)]⇝i s
′; ϵ ; (i64.const κ) (i64.const v) (call h) trap∧(s ′,κ) = δctrl(s, i,v

∗
, Lmax)

There are two sub-sub cases, either getRoot(s, i) = nil or getRoot(s, i) = κ0 for some κ0:

Case C2.1.1 getRoot(s, i) = nil ∧ pr , 0

By Case C2.1 and C2.1.1:

H45) δctrl(s, i,v
∗
, Lmax) = (s ′,κ) = (setCont(setRoot(s, i,κ), i,κ, {locals = v∗

l
, ctx = Lmax}),κ)

H46) getCont(s, i,κ) = nil

By H3 and H45 we can type check s ′:

H47) ⊢ s ′ : S ′

H48) pr = max{p | S ′inst(i)pstack(p)root , nil}

H49) S ′inst(i)pstack(pr )root = κR
H50) S ′inst(i)pstack(pr )ctable(κR ) = t∗

The new stack can be independently type checked. By the control type checking rule, S ′inst(i)func(h) = i64 i64 → ϵ .

Thus,

H51) ⊢i s
′; ϵ ; (i64.const κ)(i64.const v)(call h)trap : ϵ

By H47, H48, H49, H50, H51 and the [Non-Root] rule:

H52) ⊢ki s ′; ϵ ; (i64.const κ)(i64.const v)(call h)trap : t∗

Case C2.1.1 is complete.

Case C2.1.2 getRoot(s, i) = κ0 , nil

By Case C2.1 and C2.1.2:

H53) δctrl(s, i,v
∗
, Lmax) = (s ′,κ) = (setCont(s, i,κ, {locals = v∗

l
, ctx = Lmax}), κ)

H54) getCont(s, i,κ) = nil

By H3 and H53 we can type check s ′:

H55) ⊢ s ′ : S ′

H56) pr = max{p | S ′inst(i)pstack(p)root , nil}

H57) S ′inst(i)pstack(pr )root = κR
H58) S ′inst(i)pstack(pr )ctable(κR ) = t∗

16



Wasm/k: Delimited Continuations for WebAssembly DLS ’20, November 17, 2020, Virtual, USA

The new stack can be independently type checked. By the control type checking rule, S ′inst(i)func(h) = i64 i64 → ϵ .

Thus,

H59) ⊢i s
′; ϵ ; (i64.const κ)(i64.const v)(call h)trap : ϵ

By H55, H56, H57, H58, H59 and the [Non-Root] rule:

H60) ⊢ki s ′; ϵ ; (i64.const κ)(i64.const v)(call h)trap : t∗

Case C2.1.2 is complete.

Case C2.2 s;v∗;Lmax[(i64.const κ)(i64.const v)restore]⇝i s
′; v ′∗; Lmax ′[(i64.const v)] ∧ (s ′,v∗

, Lmax ′) = δrest(s, i,κ)

By C2.2:

H61) getRoot(s, i) = κ0 , nil

There are two sub-sub cases, either κ = κ0 or κ , κ0:

Case C2.2.1 κ = κ0

By C2.2.1:

H62) δrest(s, i,κ) = (s ′,v ′∗
, Lmax ′) = (setRoot(setCont(s, i,κ, nil), i, nil), getCont(s, i,κ)locals, getCont(s, i,κ)ctx)

By H3 and H62 we can type check s’:

H63) ⊢ s ′ : S ′

There are two sub-sub-sub cases, either pr = 0 or pr ≥ 1:

Case C2.2.1.1 pr = 0

By C2.2.1.1 and H42,

H64) κ = κ0 = κR = Sinst(i)pstack(pR )root
By C2.2.1.1, H62, and H63:

H65) S ′inst(i)roots = nil∗

By C2.2.1.1, H64, and Lemma A.1:

H66) ⊢i s
′; v ′∗; Lmax ′[(i64.const v)] : t∗

By H63, H65, H66, and the [Root] rule:

H67) ⊢ki s ′; v ′∗; Lmax ′[(i64.const v)] : t∗

Case C2.2.1.1 is complete.

Case C2.2.1.2 pr ≥ 1

By C2.2.1.2 and H63:

H68) pr = max{p | S ′inst(i)pstack(p)root , nil}

H69) S ′inst(i)pstack(pr )root = κR
H70) S ′inst(i)pstack(pr )ctable(κR ) = t∗

The stack we are switching to can be type checked by H3 and Lemma A.1:

H71) ∃t̃ ′∗, ⊢i s
′; v ′∗; Lmax ′[(i64.const v)] : t̃ ′∗

By H63, H68, H69, H70, H71, and the [Non-Root] rule:

H72) ⊢ki s ′; v ′∗; Lmax ′[(i64.const v)] : t∗

Case C2.2.1.2 is complete.

Case C2.2.2 κ , κ0

By C2.2.2:

H73) δrest(s, i,κ) = (s ′,v ′∗
, Lmax ′) = (setCont(s, i,κ, nil), getCont(s, i,κ)locals, getCont(s, i,κ)ctx)

By H3 and H73 we can type check s’:

H74) ⊢ s ′ : S ′

H75) pr = max{p | S ′inst(i)pstack(p)root , nil}

H76) S ′inst(i)pstack(pr )root = κR
H77) S ′inst(i)pstack(pr )ctable(κR ) = t∗

The stack we are switching to can be type checked by H3 and Lemma A.1:

H78) ∃t̃ ′∗, ⊢i s
′; v ′∗; Lmax ′[(i64.const v)] : t̃ ′∗

By H74, H75, H76, H77, H78, and the [Non-Root] rule:

H79) ⊢ki s ′; v ′∗; Lmax ′[(i64.const v)] : t∗

Case C2.3 s;v∗;Lmax[(i64.const κ)(i64.const v)restore]⇝i s; v
∗; trap ∧ δrest(s, i,κ) undefined

By the type checking of trap,

H80) ⊢i s; v
∗; trap : ϵ

By Case C2, H3, H42, H44, H80, and the [Non-Root] rule, we conclude:

H81) ⊢ki s; v∗; trap : t∗
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Case C2.3 is complete.

Case C2.4 s;v∗;Lk [(i64.const κ)continuation_copy] ֒→i s
′;v∗;Lk [(i64.const κ ′)] ∧ (s ′,κ ′) = δcopy(s, i,κ)

By Case C2.4:

H82) δcopy(s, i,κ) = (s ′,κ ′) = (setCont(s, i,κ ′
, getCont(s, i,κ)),κ ′)

H83) getCont(s, i,κ ′) = nil.

By H43, Case C2.4, and Lemma A.1,

H84) ⊢i s
′; v∗; Lk [(i64.const κ ′)] : t̃∗

By H3, there exists a type for the stack that is being copied:

H85) ∃t ′∗, Sinst(i)pstack(0)ctable(κ) = t ′∗

By Case C2, H82, H83, H85, and the store typing relation:

H86) ⊢ s ′ : S ′

H87) pr = max{p | S ′inst(i)pstack(p)root , nil}

H88) S ′inst(i)pstack(pr )root = κR
H89) S ′inst(i)pstack(pr )ctable(κR ) = t∗

By H84, H86, H87, H88, H89 and the [Non-Root] rule:

H90) ⊢ki s ′;v∗;Lk [(i64.const κ ′)] : t∗

Case C2.4 is complete.

Case C2.5 s;v∗;Lk [(i64.const κ)continuation_copy] ֒→i s;v
∗;Lk [trap] ∧ δcopy(s, i,κ) undefined

By the type checking of trap, H43, and Lemma A.1,

H91) ⊢i s; v
∗; Lk [trap] : t̃∗

By Case C2, H3, H42, H44, H91, and the [Non-Root] rule, we conclude:

H92) ⊢ki s; v∗; Lk [trap] : t∗

Case C2.5 is complete.

Case C2.6 s;v∗;Lk [(i64.const κ)continuation_delete] ֒→i s
′;v∗;Lk [ϵ] ∧ s ′ = δdelete(s, i,κ)

By Case C2.6:

H93) δdelete(s, i,κ) = s
′
= setCont(s, i,κ, nil)

By H43, Case C2.6, and Lemma A.1,

H94) ⊢i s
′; v∗; Lk [ϵ] : t̃∗

By Case C2, H93, and the store typing relation:

H95) ⊢ s ′ : S ′

H96) pr = max{p | S ′inst(i)pstack(p)root , nil}

H97) S ′inst(i)pstack(pr )root = κR
H98) S ′inst(i)pstack(pr )ctable(κR ) = t∗

By H94, H95, H96, H97, H98 and the [Non-Root] rule:

H99) ⊢ki s ′;v∗;Lk [(i64.const κ ′)] : t∗

Case C2.6 is complete.

Case C2.7 s;v∗;Lk [(i64.const κ)continuation_delete] ֒→i s;v
∗;Lk [trap] ∧ δdelete(s, i,κ) undefined

By the type checking of trap, H43, and Lemma A.1,

H100) ⊢i s; v
∗; Lk [trap] : t̃∗

By Case C2, H3, H42, H44, H100, and the [Non-Root] rule, we conclude:

H101) ⊢ki s; v∗; Lk [trap] : t∗

Case C2.7 is complete.

Case C2.8 s;v∗;Lk [prompt tf e∗ end] ֒→i s
′;v∗;Lk [block tf e∗ end prompt_end] ∧ s ′ = δp(s, i)

By Case C2.8:

H102) δp(s, i) = s
′ where s ′ = s except s ′inst(i)pstack 7→ push(sinst(i)pstack, {ctable = nil∗, root = nil})

By H43, H102, the type checking of prompt, and Lemma A.1,

H103) ⊢i s
′; v∗; Lk [block tf e∗ end prompt_end] : t̃∗

By H3, H102 and store typing:

H104) ⊢ s ′ : S ′

H105) pr = max{p | S ′inst(i)pstack(p)root , nil}

H106) S ′inst(i)pstack(pr )root = κR
H107) S ′inst(i)pstack(pr )ctable(κR ) = t∗

By H103, H104, H105, H106, H107, and the [Non-Root] rule:
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H108) ⊢ki s ′; v∗; Lk [block tf e∗ end prompt_end] : t∗

Case C2.8 is complete.

Case C2.9 s;v∗;Lk [prompt_end] ֒→i s
′;v∗; Lk [ϵ] ∧ s ′ = δp-end(s, i)

The administrative store typing of prompt_end implies:

H109) Sinst(i)pstack(0) = nil

By Case C2.9:

H110) δp-end(s, i) = s
′ where s ′ = s except s ′inst(i)pstack 7→ pop(sinst(i)pstack)

By H43, H110, the type checking of prompt_end, and Lemma A.1,

H111) ⊢i s
′; v∗; Lk [ϵ] : t̃∗

By H3, H109, H110 and store typing:

H112) ⊢ s ′ : S ′

H113) pr − 1 = max{p | S ′inst(i)pstack(p)root , nil}

H114) S ′inst(i)pstack(pr − 1)root = κR
H115) S ′inst(i)pstack(pr − 1)ctable(κR ) = t∗

By H111, H112, H113, H114, H115, and the [Non-Root] rule:

H116) ⊢ki s ′; v∗; Lk [ϵ] : t∗

Case C2.9 is complete.

Case C2.10 s;v∗; e∗ ֒→i s
′;v ′∗; e ′∗ for some redex in standard WebAssembly.

Since standard WebAssembly redexes do not modify the continuation tables,

H117) ⊢ s ′ : S ′

H118) S ′inst(i)pstack = Sinst(i)pstack
Therefore, by H43 and the Preservation theorem of standard WebAssembly:

H119) ⊢i s
′; v ′∗; e ′∗ : t̃∗

By H117, H118, H119, and the [Non-Root] rule:

H120) ⊢ki s ′; v ′∗; e ′∗ : t∗

Case C2.10 is complete.

□

Theorem A.3 (⇝ Progress). If ⊢ki s;v∗; e∗ : t∗, then either e∗ = v ′∗ or e∗ = trap or s;v∗; e∗ ⇝i s
′;v ′∗; e ′∗.

Proof. The reduction rules for control, restore, continuation_copy, continuation_delete, and prompt can be trivially checked

to cover the space of possible well-typed configurations s ;v∗; e∗. Thus, all redexes for these instructions are guaranteed to take

a step with⇝ to a new configuration (possibly a step to a trap).

The non-trivial case is prompt_end. Suppose ⊢ki s;v∗;Lk [prompt_end] : t∗. From the reduction rule of prompt_end, a step

s;v∗;Lk [prompt_end]⇝ s;v∗;Lk [ϵ] will occur if getRoot(s, i) = nil.

However, no such step occurs if getRoot(s, i) , nil. We thus want to show that getRoot(s, i) , nil is in contradiction with

⊢ki s ;v∗;Lk [prompt_end] : t∗, implying that this case cannot occur. By the [Prompt-End] rule and ⊢ki s ;v∗;Lk [prompt_end] : t∗

we can deduce that ⊢ s : S and Sinst(i)pstack(0)root = nil. From this and the store typing rules, we find that getRoot(s, i) = nil,

which is a contradiction. □
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